

ОБЗОР МЕТОДОВ ПРЕДОБРАБОТКИ ДАННЫХ

в литературе Методам предобработки машинному обучению и анализу данных (МО и АД) отводят достаточно скромное место. Большая часть материала посвящена описанию самих алгоритмов МО и АД и их применению на чистых, уже подготовленных данных. Как правило, упоминаются лишь самые математически нагруженные методы предобработки, например, методы сокращения пространства признаков в контексте задачи улучшения показателей качества модели.

При этом, практикам анализа данных хорошо известно, насколько значим вклад предобработки в успешное решение задачи. Вот цитата авторитетного исследователя данных Григория Пятецкого-Шапиро: «Наиболее сложные этапы анализа — очистка данных, предобработка, выбор переменных. Они отнимают много времени, но если всё выполнено на должном уровне, результат не заставит себя долго ждать».

Попыток системного и всеобъемлющего описания методов предобработки немного. Информация об отдельных методах предобработки содержится в статьях с результатами анализа данных в различных областях, представлена в небольших практических примерах решения задач на реальных данных на kaggle, рассыпана в постах на хабре ...

Знакомство с этими материалами показывает многообразие методов предобработки, их ориентированность на обязательное понимание физического смысла как самих данных, так и их дефектов, знание предметной области, особенностей источников данных. Именно в силу различной природы данных методы обработки пропусков в социологическом исследовании будут принципиально отличаться от методов обработки пропусков в данных от промышленного датчика!

С развитием цифровых производств Индустрии 4.0, чистота данных становится критически важным требованием; в среде специалистов по данным выделилась отдельная группа - Data Quality Engineer, инженеры по качеству данных. Задача таких специалистов - создание автоматизированной системы контроля качества данных в реальном времени для их использования в системах принятия решения различного уровня.

О первичности чистых данных по отношению к их количеству, и даже к алгоритмам МО и АД, образно сказал Peter Norvig: «More data beats clever algorithms, but better data beats more data» - Больше данных лучше умных алгоритмов, но лучшие данные лучше их большого количества.

В этой памятке предпринята попытка сделать систематизированное, краткое ёмкое описательное представление методов предобработки данных. И если в ходе своих собственных исследований Вы котя бы обратитесь к этой шпаргалке, чтобы воскресить в памяти подходы к обеспечению чистоты, полноты, безызбыочности и непротиворечивости данных, то автор будет считать цель достигнутой. Главное, помните о принципе GIGO: Garbage In - Garbage Out, мусор на входе – мусор на выходе (даже при верных алгоритмах)!

Если вы хотите узнать о методах предобработки подробнее, с формулами и разбором примеров в Python, Вы можете заказать в нашей компании специализированный курс.

С уважением, Ваша Analytera!

МЕСТО ПРЕДОБРАБОТКИ В ТИПОВОМ ПРОЦЕССЕ РЕШЕНИЯ ЗАДАЧ НА ДАННЫХ

ПРЕДОБРАБОТКА ДАННЫХ

ЭТАП 1: ИЗУЧЕНИЕ ДАННЫХ

Цель этапа: обеспечить ясность данных. Этап включает в себя следующие процедуры.

а. Понимание данных в предметной области

Перед выполнением любых процедур на данных, постарайтесь иметь ответы на следующие вопросы:

- какой объект или процесс описывают данные?
- к какой предметной области относится этот объект / процесс?
- какие специалисты являются экспертами в данной предметной области?
- какими параметрами и в каком диапазоне значений описывается этот объект / процесс в своей предметной области?
- насколько этот объект / процесс стационарен во времени?
- как бы сформулировали цель исследования специалисты в предметной области?
- как можно сформулировать цель исследования используя параметры, входящие в имеющийся набор данных?

b. Оценка полноты данных

Чтобы оценить достаточность имеющихся данных для решения задачи, постарайтесь ответить на следующие вопросы:

- насколько полно имеющиеся переменные описывают исследуемый объект / процесс?
- какие внешние факторы могут оказывать влияние на исследуемый объект / процесс?

с. Формальное описание

Чтобы иметь формальное, технологическое описание имеющегося набора данных, необходимо знать:

- размер набора;
- состав и тип переменных;
- статистическое описание переменных;
- количество пропусков в данных.

d. Визуальный анализ

Чтобы получить представление о зависимостях и структурах в данных, используйте различные методы визуализации:

- графики y = f(x), x = f(t), чтобы увидеть характер зависимости между переменными и ход их значений на временной оси;
- гистограммы, чтобы увидеть распределение значений параметров в диапазоне имеющихся значений;
- парные диаграммы рассеяния, чтобы увидеть характер зависимостей между переменными;
- диаграммы размаха ("ящик с усами"), чтобы оценить распределение вероятностей значений переменной и выбросы;
- матрицы корреляции, чтобы получить численные оценки зависимости переменных;
- кластерные и иерархические представления, чтобы увидеть структуру в данных;

Замечания: а) в некоторых источниках визуальный анализ рассматривается как самостоятельное направление в анализе данных — Visual Mining; b) визуализации используются на всех этапах АД и МО; c) если о природе данных ничего не известно или цель исследования не может быть сформулирована в терминах предметной области, визуализации помогут сформулировать вопросы формально.

Рекомендации:

- на этапе изучения данных активно взаимодействуйте со специалистами в предметной области, старайтесь получить представление об изучаемом объекте / процессе, выходящее за описание в рамках имеющихся переменных;
- на этапе изучения данных избегайте соблазна сделать какиелибо выводы касательно основного вопроса исследования.

ЭТАП 2: ОЧИСТКА ДАННЫХ

Цель этапа: обеспечить полноту, истинность, корректность, непротиворечивость данных. Этап может включать в себя следующие процедуры.

а. Заполнение пропусков

Основные методы обработки пропусков:

- ничего не делать, если алгоритм нечувствителен к пропускам или способен сам восстановить значения в пропусках (например, XGBoost, Light GBM);
- удалить строки с пропусками, если данных много;
- удалить столбец с пропусками, если параметр не имеет существенного значения;
- заполнить пропуски соответствующими логике значениями;
- заполнить самым частым значением или константой;
- заполнить расчётными значениями: среднее, медиана, мода;
- заполнить значениями случайной выборки из аналогичного распределения;
- заполнить пропуски методом «горячей колоды» (Hot Deck);
- восстановить значения функцией регрессии;
- восстановление полиномиальной аппроксимацией:
- восстановить значение методом классификации (например, k-NN);
- восстановить значения нейросетевым методом;
- маркировка пропусков (пропуск становится признаком).

Замечание: а) форматы представления отсутствующих значений могут быть различными: пустые ячейки, прочерки, нули, NaN / NaT (Not a Number / Not a Time), символы, радикальные выбросы (999), строковые переменные («неизвестно») и т.п.

b. Обработка невозможных значений

Поиск невозможных значений требует понимания физического смысла переменных, а выбор метода их обработки - понимания причин появления таких значений.

Подходы к обработке невозможных значений аналогичны подходам к обработке пропусков.

с. Обработка дубликатов записей

Обрабатывать дубликаты нужно, если они возникли в результате технического сбоя, ошибок ввода, или этого требует подход к решению задачи.

d. Исправление форматов ввода

Ошибки форматов данных чаще всего возникают при ручном вводе или интеграции данных.

Размерности параметров целесообразно приводить размерностям, используемым на практике.

е. Сглаживание выбросов

Простейший метод поиска выбросов — визуальный анализ. Основные приёмы обработки:

- удалить записи с выбросами, если методика исследования это допускает;
- провести сглаживание.

<u>Замечания:</u> а) большинство алгоритмов чувствительны выбросам.

Рекомендации:

- чтобы выбрать верный метод обработки дефекта, необходимо: а) понимать физический смысл переменной с дефектом, б) иметь гипотезу о появлении дефекта, в) знать характер дефекта: случайный, псевдослучайный или предсказуемый;
- отличайте нуль, как фактическое значение параметра, от нуля, обозначающего дефект данных: пропуск, невозможное значение и др.;
- отличайте пустую ячейку, как фактическое отсутствие значения переменной, от дефекта пропуска в данных;
- методология обработки дефектов на предикторах и целевых переменных могут быть различны.

ЭТАП 3: ПРЕОБРАЗОВАНИЕ ДАННЫХ

Цель этапа: обеспечить структурированность, однородность, согласованность и безызбыточность данных. Этап может включать в себя следующие процедуры.

а. Приведение типов данных

Задача: выполнить требования алгоритмов к типам данным. Основной метод - кодирование номинативных переменных.

Замечание: некоторые алгоритмы нечувствительны к типам входных данных, например, деревья решений (Decision Tree), случайный лес (Random Forest).

b. Нормализация

Задача: улучшить качество работы алгоритмов за счёт приведения данных к нужному диапазону («в одну шкалу»). Основные метолы:

- нормализация на максимум;
- нормализация на интервал;
- ранговая нормализация.

Замечание: существенно повышает эффективность метрических алгоритмов классификации: метод ближайшего соседа (k- Nearest Neighbors), метод k-средних (k-means), машина опорных вектором (Support Vector Machine).

с. Стандартизация

Задача: улучшить качество работы алгоритмов за счёт приведения данных к стандартному нормальному распределению, где: математическое ожидание $\mu=0$:

стандартное отклонение $\sigma=1$.

Замечание: существенно повышает эффективность метрических алгоритмов классификации: метод ближайшего соседа (k- Nearest Neighbors), метод k-средних (k-means), машина опорных вектором (Support Vector Machine).

d. Создание новых признаков (Feature engineering)

Задача: дополнить данные новыми параметрами, позволяющими повысить интерпретируемость модели и выявить новые признаки. Основные методы:

- агрегирование, или вычисление статистик на наборе однотипных параметров;
- обобщение, или создание групповых описательных признаков;
- квантование, или кодирование интервалов вещественных значений признака для перевода к порядковым значениям;
- выделение временных интервалов на временном ряде.

e. Обогащение данных (Data enrichment)

Задача: дополнить имеющийся набор новыми данными, определённо влияющими на исследуемый объект или процесс, например:

- метеоусловия сказывается на посещаемости магазинов;
- курс валют влияет на спрос на зарубежные поездки.

<u>Замечания</u>: а) учитывайте стоимость и доступность данных, используемых для обогащения; б) учитывайте часовые пояса при интеграции данных на временных рядах из разных источников.

f. Оптимизация пространства признаков (Data reduction)

Задача: повысить производительность вычислений и улучшить интерпретируемость результатов за счёт сокращения пространства признаков. Основные методы:

- корреляционный анализ;
- метод главных компонент (PCA Principal Component Analysis);
- многомерное шкалирование (MDS Multidimensional Scaling);
- факторный анализ, t-SNE и другие методы.

Замечание: a) РСА выявляет линейные зависимости между переменными, a MDS нелинейные; б) методы сокращения пространства признаков используются в задачах визуализации многомерных данных.

ЭТАП 4: ОТБОР ПЕРЕМЕННЫХ

Цель этапа: обеспечить максимальную эффективность модели на подготовленном наборе данных.

а. Отбор переменных (Feature selection)

Задача: определить совокупность переменных, на которых будет получен наилучший результат предсказания.

В общем случае метод отбора зависит от алгоритма, на котором строится модель, например:

 для регрессионных моделей используют методы прямого, обратного, последовательного отбора, метод лучших подмножеств.